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ESTIMATION AND DISPLAY FOR VECTOR
DOPPLER IMAGING USING PLANE WAVE
TRANSMISSIONS

BACKGROUND

1. Technical Field

The present disclosure pertains to ultrasound imaging and,
more particularly, to an ultrasound imaging system utilizing
velocity vector estimation for generation of a vector Doppler
color image in which a synthetic particle flow visualization
method is employed.

2. Description of the Related Art

Ultrasound Imaging has developed into an effective tool
for diagnosing a wide variety of disease states and conditions.
The market for ultrasound equipment has seen steady growth
over the years, fueled by improvements in image quality and
the capability to differentiate various types of tissue. Unfor-
tunately, there are still many applications for ultrasound sys-
tems where the equipment costs are too high for significant
adoption. Examples are application areas such as breast can-
cer detection, prostate imaging, musculoskeletal imaging,
and interventional radiology. In these areas and others, the
diagnostic efficacy of ultrasound imaging depends on excel-
lent spatial and contrast resolution for differentiation and
identification of various tissue types. These performance
capabilities are found only on the more expensive ultrasound
systems, which have more extensive processing capabilities.

Ultrasound imaging has always required extensive signal
and image processing methods, especially for array systems
employing as many as 128 or more transducer elements, each
with unique signal processing requirements. The last decade
has seen a transition to the improved accuracy and flexibility
of digital signal processing in almost all systems except for
those at the lowest tiers of the market. This transition has the
potential for reducing system costs in the long term by utiliz-
ing highly integrated digital circuitry. Unfortunately, the low
manufacturing volumes of ultrasound systems results in sub-
stantial overhead and fixed costs for these unique circuits, and
thus the transition to digital signal processing has not signifi-
cantly reduced system cost.

Doppler methods in medical ultrasound encompass a num-
ber of related techniques for imaging and quantifying blood
flow. For stationary targets, the round trip travel time of a
pulse reflected from the target back to the transducer is the
same for each transmission. Conversely, successive echo-
graphic returns from a moving object will arrive at different
times with respect to the transmit pulse, and by cross corre-
lating these echoes the velocity of the object can be estimated.
Because the ultrasound path is directional (along the beam
axis), only axial motion produces a Doppler signal. Flow that
is transverse to the beam is not detectable, and thus the veloc-
ity magnitudes obtained in conventional Doppler methods
represent only the axial component of the flow velocity vec-
tor. In order to estimate the true magnitude of the flow veloc-
ity vector, Vector Doppler methods are employed. Generally,
these methods rely on multiple beam angle data to estimate
the direction of the flow vector and the flow velocity vector.

Several Doppler-based methods have been developed to
present different aspects of blood flow. Typically, “spatial
imaging” of the flow field is used to locate vessels, to measure
their size, and to observe flow structure. “Flow imaging” is
used in conjunction with echographic imaging in a “duplex”
mode that combines both types of images in an overlay, with
echographic amplitude presented in grayscale and flow veloc-
ity rendered in color. The flow field is computed within a
region of interest (ROI) that is a subset of the larger echo-
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2
graphic image, because flow imaging is more demanding in
both acquisition time and processing load.

Detailed quantification of flow velocity is possible within a
much smaller sample volume chosen within the ROI. The
smallest volume that can be sampled and processed indepen-
dently is given by the axial length (the transmit pulse length)
and the lateral beam widths (in and out of the imaging plane).
Spatial resolution of any method depends on the size of the
sample volume and also on the system sensitivity settings for
that location.

The Spectral Doppler method reports the spectrum of flow
velocity and how it varies over the cardiac cycle, and it usually
presents the spectrum graphically as a spectrogram and audi-
bly through loudspeakers. Moreover, the Spectral Doppler
method computes the power spectrum of flow velocity
obtained over a sequence of transmissions, and usually pre-
sents the spectrum graphically as a spectrogram and audibly
through loudspeakers. Access to the full time-varying spec-
trum of blood velocities allows accurate calculation of mean
and peak flow velocities within the sample region and pro-
vides the most complete characterization of flow disturbances
of all the ultrasound Doppler methods.

Color Flow Doppler imaging of the velocity field within a
region of interest is a method that presents flow using a color
palette that typically renders higher velocities more brightly
than slower ones, and distinguishes between different flow
directions (generally toward the transducer or away from it)
by using warm (reddish) and cool (bluish) tones. Very slowly
moving and stationary regions are not colored, and a “wall
filter” threshold is used to set the minimum cutoff velocity.
Color Flow Doppler can provide approximate mean flow
velocities in the region of interest, but accuracy is limited due
to the short acquisition sequences needed to maintain reason-
able frame rates.

Color Flow Doppler requires the acquisition of a rapid
sequence of identical transmit-receive events, or “ensemble”,
to detect and quantify motion by various means, essentially
looking for correlated differences in arrival time, or phase, of
the signal. The pulse repetition frequency (PRF) can be as fast
as permitted by the round trip travel time of sound from the
transducer to the maximum depth of the image and back
again, but is generally adjusted to the minimum permitted to
visualize peak blood velocities without aliasing. Typically, an
ensemble of between 8 and 16 pulse-echo events is used for
each Doppler scan line in the ROI. Choice of transmit beam
focus parameters usually leads to Doppler scan lines that are
2 to 3 times broader than those used for echographic imaging.
The requirement to transmit an ensemble of pulses in each
beam direction generally leads to slower frame rates for Color
Flow Doppler than for echographic imaging. Artifacts from
slow frame rate can often be more noticeable in Doppler
imaging than in grayscale echography because significant
changes in flow can occur over a fraction of a cardiac cycle,
and even slight probe motion may result in apparent flow over
the entire ROI.

Using a small ROI can improve frame rates, but may limit
the assessment of flow abnormalities. For example, a Color
Flow ROI using 10 Doppler lines and ensembles of 12 pulses
requires 120 events, similar to a full frame echographic
image.

In general, high quality Doppler imaging is more techni-
cally difficult than echographic imaging in great part because
backscattering from blood is very weak compared to tissue.
Well known fundamental challenges to producing unclut-
tered and artifact-free Color Flow images include:
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The requirement for highly repeatable transmit pulses, and
very low noise and phase jitter in the acquisition hard-
ware.

Flow signals are often of the same order of magnitude as
various sources of noise, but averaging has an adverse
impact on frame rate and other motion artifacts.

The large contrast between the scattering amplitudes of
tissue and blood leads to difficulty in discriminating
between vessel walls (strong echo) and moving blood
(weak echo), even when the velocity contrast is high. In
addition, blood flow velocity is often very slow near
vessel walls, which often move (pulsate) in synchrony
with the cardiac cycle.

Doppler pulses are typically longer than echographic
pulses, and care must be taken to spatially register the
flow and echo images which have different resolutions.
This is particularly challenging for small blood vessels
since the sample volume for Doppler pulses can be
larger than the vessel diameter.

BRIEF SUMMARY

Vector Doppler Imaging (VDI) improves on conventional
Color Doppler Imaging (CDI) by giving speed and direction
of blood flow at each pixel. Multiple angles of Plane Wave
Transmissions (PWT) conveniently give projected Doppler
measurements over a wide field of view, providing enough
angular diversity to identify velocity vectors in a short time
window while capturing transitory flow dynamics. In a vari-
ant of the method, only a single plane wave angle is required,
providing flexible application to situations of imaging deeper
tissue. Fast, aliasing-resistant velocity vector estimators for
PWT schemes are disclosed.

The VDI imagery is dynamically presented to the user
using a novel synthetic particle flow visualization method
disclosed herein. The system and methods have been demon-
strated by imaging of the carotid artery on a human volunteer
with a 5 MHz linear array.

In the present disclosure, two method types are described:
a Doppler-based method that exploits multiple angles of
plane wave transmissions; and a gradient-based method,
which can operate effectively on only a single plane wave
angle of transmission (but can incorporate more than one
angle if available). In both methods, a PWT measurement
model is partitioned into nonlinear and linear components in
a way that simplifies vector velocity computation.

In the multi-angle Doppler-based method of vector flow
estimation, each pixel’s velocity vector predicts the In-Phase/
In Quadrature (IQ) measurements at diverse angles of PWT
ensembles through a nonlinear model, which are linearized
by transforming with conventional CDI processing (clutter
filtering and Kasai autocorrelation) to a set of Doppler fre-
quencies. Blood velocity vector estimation then simplifies as
the solution to a small linear weighted least squares (WLS)
problem, conditioned on a hypothesized measurement bias
dueto aliasing. Weights derived from CDI autocorrelation lag
variances account for clutter filtering effects. The nonlinear-
ity of the original problem is thus reduced to a discrete search
over a finite number of known aliasing bias vectors. Further,
the WLS estimator covariance provides information used to
qualify pixels for the presence of blood flow.

In the gradient-based vector blood flow estimation method,
PW transmission and reconstruction generate a blood motion
image sequence in the B-mode flow (B-Flow) modality, at
frame rates in the Doppler Pulse Repetition Frequency (PRF)
regimen. Pixel ensembles of the IQ data in the image
sequence at pixel point p=[x,z] and PRIt are comprised of IQ
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4

magnitude values, computed from the IQ data at each pixel p
after wall filtering the ensemble. The sequence of values thus
captures motion at a frame rate equal to the PRF, revealing
fine-scale flow dynamics as a moving texture in the blood
reflectivity. Using the chain rule, spatial and temporal deriva-
tives resulting from the space-time gradient of the image
sequence couple to the texture flow velocity vector field [v,
(x,z,t), v,(x,z,t)] at each pixel p and PRI t. The resulting
estimation equations are solved by least squares in the Gauss-
Markov model context to give the vector flow velocity esti-
mates, which are formulated in the model to be constant over
the estimation window.

The gradient-based method allows augmentation of the
observation in the estimation model, with conjugate-lag prod-
uct samples (autocorrelation summands)—in addition to the
zero lag (IQ magnitude case)—at lags of higher numbers, and
as well as instantaneous Doppler-derived velocity estimates.
This augmentation provides improved precision with a trade-
off against accuracy.

Compared to the multi-angle Doppler-based process dis-
closed within, the gradient-based approach allows for a
longer time interval for wall filtering, as the acquisition frame
does not require partitioning into separate segments for dif-
ferent plane wave transmission angles. Longer wall filter
impulse responses with steeper transition bands are then pos-
sible, for equivalent capture window times. This allows flex-
ibility in balancing frame rate and sensitivity, and enables
application to vector flow imaging of deep tissue where
achieving plane wave angle diversity becomes difficult at
high frame rates.

To visualize the resulting velocity vector images, a novel
technique is disclosed that synthesizes a moving field of
points representing particles entrained in the fluid. In its cre-
ation, each particle is probabilistically generated at a pixel
where flow is detected, and imbued with motion proportional
to the velocity vector estimate, scaled down so the viewer may
easily perceive motion. Particles migrate across the image
from frame to frame under conservation rules that control
particle density to the user’s preference. The particle motion
overlays the detected flow regions, which are color-coded for
velocity magnitude.

Using a Philips 1.7-4 transducer and a Verasonics acquisi-
tion system, in vivo VDI on a carotid artery is demonstrated
with Doppler-based and gradient-based methods. PWT
ensembles collected at seven angles are processed with the
Doppler-based VDI process, in a GPU implementation that
accommodates the collection rate of 30 fps. A single PWT
angle is used to demonstrate the gradient-based process, at a
data collection rate of approximately 60 FPS. Video display
reveals dynamics of the flow field and shows good detection
of flow during diastole. This vector velocity imaging frame-
work demonstrates acquisition frame rates sufficient to cap-
ture flow dynamics in the carotid artery. The gradient-based
VDI process method is also evaluated for accuracy and pre-
cision using a Doppler string phantom.

The particle flow visualization technique is demonstrated
to be subjectively informative in conditions of plug, laminar,
and turbulent flow.

Note that throughout this disclosure, the terms “Vector
Flow”, “Vector Velocity”, and “Vector Doppler” are used
synonymously.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The foregoing and other features and advantages of the
present invention will be more readily appreciated as the
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same become better understood from the following detailed
description when taken in conjunction with the accompany-
ing drawings, wherein:

FIG. 1is anillustration of geometry definitions for a multi-
angle plane wave acquisition scheme in accordance with the
present disclosure;

FIG. 2 is an illustration of an example autocorrelation
lag-one variance in relation to autocorrelation value magni-
tude;

FIG. 3 is an illustration of an example autocorrelation
lag-one angle distribution as a function of DSNR;

FIG. 4 is a graphical illustration of mapping from DSNR,,
to 0, %

FIG. 5 is a flow diagram showing a relationship between
process functions and data components;

FIG. 6 is an illustration of an example frame of particle
flow visualization applied to carotid artery vector flow imag-
mg;

FIG. 7 is an illustration of the main stages of the particle
flow visualization process of the present disclosure;

FIG. 8 illustrates a high-level representation of the system
architecture for the processes of the present disclosure;

FIG. 9 is a schematic representation of a software-based
architecture of one embodiment of pixel-oriented processing;

FIG. 10 is a diagram of a plug-in module formed in accor-
dance with the pixel-oriented processing;

FIG. 11 is a schematic representation of the acquisition
data for a 128 element linear array formed in accordance with
the pixel-oriented processing;

FIG. 12 is an illustration of a pixel mapping process used in
pixel-oriented processing; and

FIG. 13 is an illustration of flow angle estimation by Dop-
pler-augmented gradient approach.

DETAILED DESCRIPTION

In the multi-angle Doppler-based method of vector flow
estimation, a PWT measurement model is partitioned into
nonlinear and linear components in a way that simplifies
vector velocity computation. Each pixel’s velocity vector
predicts the IQ measurements at diverse angles of PWT
ensembles through a nonlinear model, which we linearize by
transforming with conventional CDI processing (clutter fil-
tering and Kasai autocorrelation) to a set of Doppler frequen-
cies. Velocity vector estimation then simplifies as the solution
to a small linear weighted least squares (WLS) problem,
conditioned on a hypothesized measurement bias dueto alias-
ing. Weights derived from CDI autocorrelation lag variances
account for clutter filtering effects. The nonlinearity of the
original problem is thus reduced to a discrete search over a
finite number of known aliasing bias vectors. Further, the
WLS estimator covariance provides information used to
qualify pixels.

In the gradient-based vector blood flow estimation method,
PW transmission and reconstruction generate a blood motion
image sequence in the B-mode flow (B-Flow) modality, at
frame rates in the Doppler PRF regimen. Pixel ensembles of
the 1Q data in the image sequence at pixel point p=[x,z] and
PRI t are comprised of 1QQ magnitude values, computed from
the 1Q data at each pixel p after wall filtering the ensemble.
The sequence of values thus captures motion at a frame rate
equal to the PRF, revealing fine-scale flow dynamics as a
moving texture in the blood reflectivity. Using the chain rule,
spatial and temporal derivatives resulting from the space-time
gradient of the image sequence couple to the texture flow
velocity vector field [v,(X,Z,1), v.(X,Z,t)] at each pixel p and
PRI t. The resulting estimation equations are solved by least

10

15

20

25

30

35

40

45

50

55

60

65

6

squares in the Gauss-Markov model context to give the vector
flow velocity estimates, which are formulated in the model to
be constant over the estimation window.

To visualize the resulting velocity vector image, a novel
technique is used that synthesizes a moving field of points
representing particles entrained in the fluid. In its creation,
each particle is probabilistically generated at a pixel where
flow is detected, and imbued with motion proportional to the
velocity vector estimate, scaled down so the viewer may
easily perceive motion in a “real-time slow-motion” presen-
tation. Particles migrate across the image from frame to frame
under conservation rules that control particle density to the
user’s preference. The particle motion overlays the detected
flow regions, which are color-coded for velocity magnitude.
Methods for displaying blood flow vector velocity imagery as
quantitative velocity spectrum and as vessel flow rate are also
disclosed.

Using for example a Philips [.7-4 transducer and a Vera-
sonics acquisition system, the present disclosure demon-
strates in vivo VDI on neck vasculature. PWT ensembles
collected at seven angles are processed with the multi-angle
Doppler-based VDI process, in a GPU implementation that
accommodates the collection rate of 30 fps. Video display
reveals dynamics of the flow field and shows good detection
of flow during diastole. This vector velocity imaging frame-
work demonstrates acquisition frame rates sufficient to cap-
ture flow dynamics in the carotid artery. The process is con-
ceptually simple and computationally efficient, and it
leverages standard CDI processing as its front-end. A single
PWT angle is used to demonstrate the gradient-based VDI
process at a data collection rate of approximately 60 FPS. The
gradient-based VDI process method is also evaluated for
accuracy and precision using a Doppler string phantom.

It is to be understood that the angle of the plane wave is
measured with respect to anormal at the face of the transducer
as shown in FIG. 1 as the angle between the plane wave
wavefront and the transducer array.

The particle flow visualization technique is subjectively
informative in conditions of plug, laminar, and turbulent flow.

Frame-rate Analysis: Here the benefit to frame-rate, of
using the multi-angle Doppler-based blood flow velocity vec-
tor computation method, is compared to a conventional ray-
line-based imaging system. Assume the ensemble length is 18
PRIs, and the PRF is 4 KHz. Then, for seven plane wave
angles, the framerate (not including B-Mode acquisitions) of
the disclosed method is 32 fps. Comparing this to a steered
linear array acquisition approach, with 2:1 multiline acquisi-
tions with 30 transmit lines per frame, giving a framerate of
one fps, 32 times slower.

TABLE I

GLOSSARY

t PRI index

0,, plane wave (PW) transmission angle
PW angle index

Number of PW transmission angles per
frame

Number of PRIs for each 6,

image point IQ sample

flow signal at PRI t and angle ©,,

H clutter filter matrix

clutter wall & stationary tissue signal

noise receiver noise of variance 0,2

f,, Doppler frequency estimates at angle 6,,
(_5/2 variance of Doppler frequency estimates
a,, lag-1 autocorrelation of flow estimate

t-th conjugate lag-1 flow signal product
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Multi-Angle Doppler-Based Method for Vector Velocity
Blood Flow Estimation: Process Description

A vector Doppler estimation process in accordance with
the present disclosure produces velocity vector estimates for
each reconstructed image point. The acquisition scheme
ensonifies the tissue with plane wave transmissions, emitted
from the array at different plane wave propagation angles.
Each plane wave angle is used for several PRIs, so that an
ensemble of transmissions is collected at each angle.

Application of Blood Flow Velocity Vector Estimation
Method to Wide-Beam Transmissions:

While the methods for generating blood flow velocity vec-
tor estimates disclosed here are developed in the context of
plane wave transmissions, the methods are equally suitable to
multiple wide-beam transmissions, by modifying the bistatic
range-rate models accordingly for the wavefront orientation
at each pixel.

The estimation process splits computation into three
stages. First, Doppler estimation is applied separately to
ensemble data collected at each of the transmitted plane wave
angles. This is conventional color flow processing that
removes stationary tissue effects and produces estimates of
Doppler frequency due to projected (relative) blood flow
velocity measured at each plane wave angle. Autocorrelation
lags and derived statistics, in the manner of the Kasai auto-
correlation-based blood Doppler estimation, are a computed
byproduct at each image point. The result is a multi-angle set
of relative Doppler estimates.

In the second step, the estimate from the first stage in set are
combined through a nonlinear least-squares estimation pro-
cedure, producing the vector velocity components of blood
flow at each image point.

Finally, the third step qualifies the vector velocity estimate
at each image point by testing for the presence of flow.

A. Acquisition and Reconstructed Signal Model

The velocity vector estimation procedure is built on an
acquisition scheme that transmits plane wave (PW) signals
over a set of angles 6,,, for me{1, ..., M}. It is assumed that
the set of PW angles is symmetric about the normal vector of
the array (in the case of curved arrays, located at the array
center). Each angle 0, defines the direction of travel normal
to the wavefront. Acquisitions dwell at each angle for N
successive pulse repetition intervals (PRI) at arate of PRF Hz,
forming an ensemble for the angle. In addition, two dummy
pulses are transmitted at the beginning of each ensemble to
induce a steady state acoustic environment. The acquisition
geometry is illustrated below in FIG. 1.

Each acquisition event produces a collection of RF data,
from which a two dimensional image is reconstructed by a
conventional beamforming process (not described here).
Thus for MxN acquisitions, MxN associated images are pro-
duced, each with identical spatial sampling coordinates in
depth and azimuth. The estimation process processes all data
at a given image point identically to, and independently from,
the data at other image points. To simplify notation we omit
the spatial sampling index in notation throughout Section II.

The signal model describes each beamformed (or other-
wise reconstructed) image point signal r,,(t) as the sum of
clutter from slow-moving tissue scattering, the blood flow
signal s, (1), and additive white noise with variance o,*. The
model for the observation of the IQQ image point of interest, at
PRIt and PW angle 6, is then

#,(D)=8,,()+clutter+noise

M

for t=0, . . . , N-1. Collecting the N samples of r,, gives an
ensemble of observations in the vector form

P frm0), . ., o (N-1)]%. )

10

15

20

25

30

35

40

45

50

55

60

65

8

B. Doppler Estimation at Each Plane Wave Angle

Prior to estimating flow signal parameters, a high-pass
filtering matrix H (stationary tissue or “wall” filter) applied to
each image point 1Q ensemble suppresses the low-Doppler
clutter signal. The filter H may be specified by a variety of
design techniques, such as polynomial- or sinusoidal-basis
regression, or computed on-line by a suitable adaptive
method. Applying the filter to the IQ ensemble data gives the
signal estimate

§,=Hr,,.

®

Then, applying the Kasai autocorrelation-based blood
Doppler method gives mean frequency estimates fm for the
flow signal at each PW angle. This step also estimates the flow
variance, which the vector estimation process later uses (Sec-
tion I1-C). The Kasai method computes the first autocorrela-
tion lag of the flow signal estimate §,, as

@)

N-1
Tn = ), an(D)
t=1

where the individual first-order lagged products a,(t) are
defined as:

@,,()=58,, % (D)3,,,(z-1). %)

The mean Doppler frequency f,, induced at angle 8, for the
image point is then estimated as:

PRFt Ny
B an” (ap)

A 6
7, = ©

where tan™' is the four-quadrant complex arctangent with
range (-x], m), and A=c/F_ is the transmitted pulse’s carrier
wavelength. It is assumed the T, have estimation error uncor-
related among m, and denote its variance

M

The velocity vector estimator described in Section II-C
exploits O’/ymz. This computation (shown in Section C2)
requires the ratio

2_
0. “=var[f,,].

DSNR,,=la,,I/o, 2, (®)

which we denote “Doppler SNR” for PW angle 0,,. To this
end, the lag variance Gamz is estimated as

®

m

=

2 o

ol = Elam([)_aml
N—lr:1

C. Velocity Vector Estimation by Doppler Estimate Com-
bining

Using each image point’s set of Doppler frequency esti-
mates and computed statistics at each of the M PW ensemble
angles, a combining process produces the desired velocity
vector. A bistatic range-rate model relates the per-angle Dop-
pler frequencies estimates to velocity. This linear mapping
expresses frequencies as functions of the velocity vector com-
ponents, corrupted by additive stochastic error and a discrete-
valued deterministic bias term due to aliasing of the Doppler
frequencies.

This model formulation is linear in the flow velocity vector
(the parameter of interest), but non-linear in the set of binary
nuisance parameters representing aliasing errors in the Dop-
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pler frequency vector b. The approach of the present disclo-
sure is to whiten the model to balance the O’/ymz, partition it into
its linear and nonlinear components, then invert the linear
portion by direct solution while hypothesizing bias vectors
through a discrete search. Choosing the lowest residual sum-
of-squares (RSS) then identifies the least-square velocity vec-
tor estimate. In Section C3 a geometric argument is developed
that reduces the size of the discrete search for aliasing bias,
and reducing overfitting to noise-only data, by constraining
aliasing to be in ensembles of adjacent plane wave angles.
Identification of aliasing bias is important to the method, as
not accounting for it will cause “blackout” areas in vessel
imagery during high-Doppler events. This is because the
aliasing bias causes a poor fit in the bistatic range-rate model,
and subsequently the WLS solution for the model will con-
sider the event to be noise. Thus, lack of blackouts during, for
example, a systole event, indicates the use of aliasing correc-
tion. Lack of excessive noise detection at non-flow events
indicates constraint of aliasing correction to adjacent plane
wave angles.

In contrast, direct 1Q-domain or autocorrelation-domain
measurement models with least-squares objective functions
have velocity related to frequency in a non-linear fashion.
This would lead to a two-dimensional non-linear minimiza-
tion problem, requiring a search for both the magnitude and
direction of the flow velocity vector. In the case of narrow-
band “plug” flow with high SNR, such an objective function
can be sharply peaked with multiple extrema, requiring a fine
search and therefore a high computation cost. In our proposed
method, the direct solver component circumvents this diffi-
culty and the search is one-dimensional with a discrete, well
defined enumeration.

1) Bistatic Range-Rate Model:

Itis assumed that the flow signal s,,,(t) acquired at PW angle
0, is subject to mean Doppler shift dominated by the bistatic
range-rate model of acoustic signal processing theory. Here
the instantaneous acoustic propagation path includes the pro-
jection of the image point’s motion vector onto the direction
vector for the incident PW transmission angle 6, and the
reflected wave’s return path directly to the closest point of the
transducer array (FIG. 1). Collecting the estimated Doppler
frequencies into a length-M vector [1, .. ., 1, ], (and reserv-
ing the notation ‘“” on f for its multi-angle LS fit in the
sequel), the model can be written as:

Sf=Av+b+e, (10)

where the flow velocity vector at the image point is v=[v_,
v,] . b represents bias due to aliasing, e is stochastic error, and
the model matrix A is dimensioned [Mx2] and has rows
a,,(0,,), where:

1. (1D
am = X[sm(em), 1 + cos(8,,)]-

Note that A is determined by the PW angles and can be
pre-computed if these are fixed.

2) Doppler Frequency Estimate Variance:

The variance Gjymz (7) of the frequency estimates depends on
DSNR,, in (8) and is computed from an empirically-deter-
mined mapping that is a rational polynomial approximation.
The motivation behind this is in analogy to the variance of the
angle associated with a complex Rice random variable. Refer-
ring to FIG. 2, it is apparent that as the quantity DSNR,,
vanishes, the angle (frequency) becomes more uncertain. In
the limit the angle becomes distributed uniformly over [0,x],
asillustrated in F1G. 3. In practice this effect is more severe on
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low-Doppler flow interrogated by plane waves arriving at an
angle near-broadside to the flow direction, and thus depends
also on wall filter characteristics. The mapping from DSNR,
to 032 is shown in graphically in FIG. 4 for the case of
l2-p1rflse ensembles, at a nominal Doppler flow frequency of
0.25*PRF. Although the approximation diverges at high
SNR, typical values for regularizing the frequency standard
deviation restrict it to be not less than 0.03. This has the good
side effect of avoiding the divergent approximation region.

Defining 6=/PRF, the rational polynomial approximation
shown in FIG. 4 is described in the MatLab code below. An
alternate novel method of computing the frequency standard
deviation is presented in the later section disclosing the gra-
dient-based vector flow estimation process.

function [varTheta] = dsnr2fvarmap (snr,varargin);
%ricemoments: compute moments of rice R.V. (approximate)
%usage:

% varTheta = var(angle(z)), in rad. squared

% forz = complex gaussian, SNR = \mean(z)\AZ/var(z)
%.

%Verasonics

% jaf 20jul2009

Kvai = length(varargin);kvai = 1; %use kvai and template below:
sizeSNR=size(snr);

%eallowed SNR range

snrdbMax=100;

snrdbMin]=-30;

SNRRANGE = snrdbMax - snrdbMin;

snrdb = 10*log10(snr(:)");

snrBounded = fdim(snrdb, snrdbMin);

snrBounded = min( snrBounded , snrdbMax — snrdbMin );
Alpha=16;

%pade ratpoly coeffs:

B3=1.72e+003;

A=[156.5685 1600];

snroffsetdb = 6.0;

f = snrBounded - snroffsetdb;

P=£"72;

denomR = A(3) - A(1)*£2;

denomIminus = A(2)*f;

denomMag?2 =AdenomR.A2 + denomIminus. 2;

Hmag? = (B3. 2)./denomMag?2;

varTheta = Hmag?2. (Alpha/2);

varTheta = reshape(varTheta,sizeSNR);

end %% %0%%% %% %% %%%0%%%0%% % %% % %% %% % %% % %
function z=fdim(x,y);

%fdim: C99 fdim( ) function emulation.

Z=X-Y;

z(find(z<0))=0;

end %main

3) Hypothesized Aliasing Biases:

InEqn. 10, elements b,,, of the vector b account for aliasing
errors, which we model as deterministic and hence as a bias.
Here we use a heuristic geometric argument to reduce the size
of a naively-constructed search over 2* choices, down to
1+MN , choices, where N, is the maximum number of PW
angles experiencing aliasing. Under a binary hypotheses set

H,: If,,|<PRF/2 (12)

H ;: PRF>|f, |<PRF/2 (13)

the single-wrap aliasing condition H, relates the estimated

frequency to the un-aliased Doppler frequency, in the noise-
free case, as

Hy: fyy~wmsign(f,)PRE.
Constructing a bias vector b from any possible binary aliasing
configurations gives 2™ possible bias vectors. To reduce the
size of the feasible set, we note that aliasing is likely to be

grouped in adjacent PW angles. Consider a PW transmission
angle, say 0, that is closest in propagation angle to the true

(14)
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direction of flow at the image point. If aliasing is present at a
0, it will be greater than aliasing at any other PW angle,
because 0 is the angle with greatest range-rate with respect
to the PW direction. Thus, the aliasing error will decrease
monotonically with the divergence of PW angles relative to
0z, to some angle of minimum aliasing error. Given a number
of acquisition angles affected by aliasing of at most PRF Hz,
we reason they must be adjacent in angle.

Flow perpendicular to the array presents a special case: the
extreme angles might both experience the same aliasing error
magnitude. Defining the PW angle adjacency on a circular
format, so the two extreme angles are considered adjacent,
addresses this special case as well.

Under the geometric restrictions outlined above, the set of
bias vectors are enumerated as follows. In the no-aliasing case
H,, b is the zero vector. Aliasing on a single PW angle among
M implies M possible bias vectors b. In these cases the bias
vectors contain zeroes as clements except at one element
among M, where the m-th element representing aliasing bias
is set to

b, =—sign(f,)PRF. (15

Generalizing this to two adjacent aliasing angles gives an
additional M cases, including the case grouping the two
extreme angles. Thus the case of two or fewer aliasing angles
gives 2M+1 bias vectors. Extending the hypothesis set by an
additional adjacent aliased angle results in another set of M
choices. Induction gives the number of hypotheses N, for N,
or fewer aliased angles as

Ny=N,xM+1. 16)

For example, assuming up to three simultaneously aliasing
PW angles in a seven-angle acquisition scheme, the feasible
set of aliasing bias error vectors has 22 distinct vectors. This
is illustrated as follows:

The trivial case is that with no aliasing.

Inthe case of aliasing in a single angle of PW transmission,
the columns of expression 17 enumerate all bias vectors for
exactly one aliased acquisition angles, out of seven acquisi-
tions ordered by PW angle.

b 0 0 an

0 0 b 0O 0O 0 O
0 0 0 b 0O 0 O
0 0 0 0 b 0 O
0 0 0 0 0 b O
0 0 0 0 0 0 b

In the case of aliasing in two angles of PW transmission,
the columns of expression 18 enumerate all bias vectors for
exactly two aliased acquisition angles, out of seven acquisi-
tions ordered by PW angle.

by 0 0 0 0 O (18)

by by 0 0 0 0 O
0 by b3 0 0 0 0
0 0 by by 0 0 0
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-continued
0 0 0 bs bs 0 0
0 0 0 0 bg bg O

00 0 0 0 b by

In the case of aliasing in three angles of PW transmission,
the columns of expression 19 enumerate all bias vectors for
exactly three aliased acquisition angles, out of seven acqui-
sitions ordered by PW angle.

by 0 0 0 0 b b 19
by by 0 0 0 0 by
by by by O 0 0 O
0 by by by 0 0 0
0 0 bs bs bs 0 0
0 0 0 bg bg bg 0
0 0 0 0 b b by

To complete the hypothesis set for the three-angle
example, form the union of (17), (18), (19), and with the zero
vector (representing the no-aliasing condition). The total is 22
possible bias vectors.

4) Least-Squares Estimation of the Velocity Vector:

Incorporating the above features of the model permits a
weighted least-squares estimator for the flow velocity vector
atthe image point, where the weights are computed to give the
conditioned measurements unity variance.

The non-linear model (10) is partitioned into linear and
nonlinear components, so that

P=[ATWA] ATW(f-b.) (20)

where the weight matrix W has its m-th diagonal element as

W =G +03,7)7" @n

The off-diagonal elements of W are zero because we assume
the noise is independent between acquisitions. The lower
bound on frequency precision o,,;, functions as a regularizer.
Typical regularization values restrict it to be not less than
(0.03[0PRF), commensurate with expected Doppler resolu-
tion. The weighting is necessary because of the presence of
the stationary tissue/wall filter H in the processing chain. At
large relative angles between flow direction and PW propa-
gation direction, especially for slow-moving flow, the relative
Doppler frequency can coincide with the stopband of H. This
renders the corresponding Doppler frequency estimate
extremely noisy. Quantifying the amount of frequency varia-
tion through (7) enables optimal weighting for the least-
squares formulation.

The optimal aliasing bias vector b. in 20 solves the mini-
mization problem

b.=argmin, ff~b,) W 2P W2 [f-b)) (22)
where the projector is computed as
Pr=I-w' 24 4T wray a2 (23)

D. Post-Processing: Interpolation and Detection

Byproducts of the least-squares estimation procedure pro-
vide metrics for detecting flow at the image point. Spatially
interpolated versions of velocity estimate precision, normal-
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ized velocity, Doppler frequency residuals, autocorrelation
residuals, and combined autocorrelation power are applied in
independent detection tests.

Spatial Interpolation:

Spatial interpolation doubles the sampling density in the x
and z dimensions, retaining the original values of the input
samples. Linear nearest-neighbor weighting provides the
interpolated points.

Velocity Precision:

Due to the weighting W, the whitened errors in Eqn. 20 are
i.i.d. and unit variance. Therefore by least squares theory, the
velocity estimate covariance is

S=faTway! (24)
0,7=Z(1,1) (25)
0,°=%,(2,2). (26)

Velocity precision, in squared distance units, is the total error
in the velocity estimate:

67=0,7+0,”. (28)

A large value for velocity precision indicates that no reliable
flow estimate is available for the image point.

Normalized Velocity Magnitude:

The normalized velocity magnitude v,,, is the length of
velocity scaled for equal precision in the coordinates:

Vi =0 (v S0, ).

The image point is the non-flow if the normalized velocity
magnitude v, ? is below a threshold.

Combined Power:

The combined power metric provides an estimate of power
seen be all acquisition angles. This aligns the lag-one auto-
correlation values a,, by corresponding elements of the fitted
frequency

29

Fe45, (30)

and weights them by DSNR so that
@, = DSNRyexp(~2xf,, | PRF)an B
(32

a=

1 i70
m=1 "

g

Comparing the computed value to a threshold parameter,
the image point is non-flow if the combined power a is too
weak.

Autocorrelation Residual:

Using the elements of the least squares fitted Doppler fre-
quency vector we weight the lag-one autocorrelation vector
components by DSNR,, and align them in the complex plane.
The sample standard deviation of the result is denoted as the
“autocorrelation RSS”,

33

Comparing the computed value to a ceiling parameter, the
image point is non-flow if the vector of lag-one autocorrela-
tions, aligned by the fitted Doppler frequencies, is too large.

Whitened Frequency Residual:

The fitted frequency vector residual is the sum of squared
fitting errors of the least squares velocity vector estimate:

RSS=|-7 (4)
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Qualification Tests:

Threshold or ceiling tests, as shown below, independently
combine the spatially interpolated metrics described above to
qualify the image point. Any test asserting true will declare
the point as “non-flow”. All tests must pass to qualify an
image point as flow. The values of thresholds and ceilings for
the tests are adjusted for each scanhead application according
to user preference.

test;: 002>TpreC (35)
testy: Vaas <Cror (36)
testy: RSS>T g pig (37
testy: RSS4c> Tcresia (38)
te5ts: P oornp<Cpony (39

Gradient-Based Method for Vector Velocity Blood Flow Esti-
mation

Overview

The blood flow vector velocity imaging process disclosed
in the previous section requires multiple angles of plane wave
(PW) transmissions to construct a robustly invertible model
for vector velocity estimates. This section discloses a set of
methods needing only a single plane wave transmission
angle, and therefore only a single ensemble. In its simplest
form, the proposed vector velocity imaging process uses PW
transmission and reconstruction to generate a blood motion
image sequence in the B-mode flow (B-Flow) modality at
frame rates in the Doppler PRF regimen. Pixel ensembles in
the image sequence F(p, t) at point p=[X, z]| and pulse t are
comprised of 1Q magnitude values, computed from the 1Q
data at each pixel p after wall filtering the ensemble. The
sequence of values thus captures motion at a frame rate equal
to the PRF, revealing fine-scale flow dynamics as a moving
texture in the blood reflectivity.

Using the chain rule, spatial and temporal derivatives
resulting from the gradient couple to the texture flow velocity
vector field [v, (X, Z, 1), v.(X, Z, )] at each pixel p and PRIt. The
resulting estimation equations are solved by least squares in
the Gauss-Markov model context to give the vector flow
velocity estimates, which are formulated in the model to be
constant over the estimation window.

We also evaluate variants that include in the observation,
conjugate-lag product samples (autocorrelation summands)
at lags 0, 1, . . ., as well as instantaneous Doppler-derived
velocity estimates; and incorporating data from multiple
plane wave angles. These variants include: (1) Gradient-only
vector velocity blood flow estimation method using blood
reflectivity intensity; (2) Gradient-based, Doppler-aug-
mented vector velocity blood flow estimation method; (3)
Gradient-based vector velocity blood flow estimation method
using multiple conjugate-lag products of blood reflectivity;
and (4) Gradient-based vector velocity blood flow estimation
method using multiple conjugate-lag products of blood
reflectivity augmented with Doppler estimates, incorporating
data from multiple plane wave transmission angles.

Compared to the multi-angle plane wave process presented
in the earlier section, this approach allows for a longer time
interval for wall filtering, as the frame is not partitioned into
separate segments for different plane wave angles. Longer
wall filter impulse responses with steeper transition bands are
then possible, for equivalent capture window times. This
allows flexibility in balancing frame rate and sensitivity, and
suggests application to vector flow imaging of deep tissue
where achieving plane wave angle diversity becomes diffi-
cult.
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A typical approach in the use gradient-only vector flow is
to achieve model robustness by spatial averaging, rather than
temporal aggregation as in the present disclosure. Thus, the
present disclosure maintains spatial resolution that would
otherwise be degraded by spatial averaging. A further novel
aspect of the present disclosure is that it avoids presummation
of the observations on which the gradient is performed, as
commonly done, in order to obtain quadratic estimates of
variance components required for weighting in the weighted
least squares (WLS) solution of the Gauss-Markov model.

Using a Philips [.7-4 transducer and a Verasonics™ acqui-
sition system, single-angle PWT vector velocity imaging has
been demonstrated on a Doppler string phantom and on a
carotid artery. PWT ensembles are collected on boresite angle
ata 5 KHz PRF. Performance is evaluated in terms of bias and
precision of the vector velocity component estimates, and
their direction. The process performance disclosed herein
offers utility in applications where imaging depth inhibits
effective generation of the PWT angular diversity required by
the multi-angle Doppler-based VDI process.
Gradient-Based Vector Flow Estimation Methods Descrip-
tion

The present disclosure considers variants of gradient-
based flow vector estimation, which compute velocity vector
values at each reconstructed image point. In contrast to the
multi-angle Doppler-based vector flow estimation method
described in the previous section of this disclosure, the gra-
dient-based vector flow estimation methods can operate
effectively at only a single plane wave transmission angle.
However, they readily generalize to incorporate a plurality of
plane wave transmission angles as well. The gradient-based
methods are effective when a limited span of plane wave
transmission angles are available, such as in the case when
imaging tissue at depths significantly larger than the trans-
ducer aperture size. Since fewer angles are required, oppor-
tunity for more rapid acquisition is available. This provides an
additional advantage when imaging with the vector flow
modality during events of rapid blood flow dynamics.
Acquisition Scheme and Preprocessing for Gradient-Based
Vector Flow Estimation

The acquisition scheme for the gradient-based vector flow
estimation methods is substantially similar to that of the
multi-angle Doppler method, except that the number of plane
wave transmission angles may be as small as one. The tissue
is insonated with PW transmissions at a typical Doppler PRF,
emitted from the array at one or more plane wave angles, to
form conventional Doppler ensembles for each pixel by PW
reconstruction. Two precursor pulses transmitted at each
plane wave angle, and not further processed, condition the
acoustic environment. The ensemble time window is limited
to be no longer than flow stationarity assumptions allow. All
process variants first process the reconstructed data with wall
filtering to remove stationary tissue clutter from each pixel
ensemble r(t), where

#(t)=s(t)+clutter+noise (40)

where respectively s represents the blood flow signal and t
represents the PRI (time) index, so that in vector form the
wall-filtered data for N samples is

§=Hr. @1

After wall filtering, the conjugate-lagged products F(p, t, 1)
of the vector of time samples s(t), at pixel image point p, of
signal data vector § are computed in compressed amplitude
format, for one or more lags 1-0,1-1, . . . as

F(p,t )=8(0)$(t-D)*13(D)3(e-1)*17*72 42)
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Note that the terms §(t)$(t-1)* are summands of the sample
autocorrelation at lag 1. These components will be used by
variants of the gradient-based vector flow estimation meth-
ods, as described below.

Gradient-Only Vector Flow Estimation

In the gradient-only Vector flow estimation process, use of
the Doppler estimates is not necessary. Here, a space-time
gradient computes the derivatives of the IQ intensity values
from the wall filtered data $(t) for each image point p. This
gradient-only process can incorporate gradients of ensemble
data collected at different plane wave transmission angles, but
does not use the actual values of plane wave transmission
angles employed. In the case of a single plane wave transmis-
sion angle, the input of the gradient computation, say F(p, t),
may be interpreted as a kind of B-Flow image sequence of
image intensity, where

Fp,5=F(p,1,0)=Is(2)|

at pixel p for all t comprising the ensemble. Note that this is
the lag-0 The process is developed as follows. Applying the
derivative chain rule,

(43)

OF dx OJdF dz
axdi t o

d ~ 44)
SFp.0=

For convenience define the image time sequence at a single
pixel p by the vector

Fip,1=0) @5)

g: H
Fp.t=N-1)

and similarly the vectors of associated gradient derivative
components over time g, g,, and g. Assume the expected
blood flow component of the images F is unchanging in time
over the acquisition window, other than a constant-velocity
rectilinear translation due to the spatial independent variables
x=X,-v,tand z=z,~v_t. Then the flow velocity vector [v,, v,]7
is constrained by computed gradient quantities through the
equation

Ye=-¢ (46)
Vx “4n

[& g1 vz|+e

=Av+e,, (48)

where we model the diagonal covariance of error vector e, as
cov(eg):10g2 (49)

The equations 48 and 49 together with unknown ng form
the Gauss-Markov model with classical solution

P=(44Ty 14y (50)

and

o=y P yI(N-2), €
where the projector is formed by

Pt=1-4(474)47, (52)

giving the blood flow vector velocity estimates v, and v_, and
variance of the blood flow reflectivity gradient noise e,.
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The use of the additive error term e, is admittedly simplis-
tic, because errors in the gradient due to noise, beamforming
clutter, and acceleration will appear also in the columns of A.

Detection

In our evaluation, pixels are detected by thresholds and
ceilings of flow power estimates, and B-mode priority set-
tings, as in conventional color Doppler imaging. The velocity
estimate predicted precision

cov(®)=(474)15,2 (53)

also provides detection information for pixel qualification,
identically to the detection methods described in the previous
section of this disclosure on Doppler-based vector flow esti-
mation.
Doppler-Augmented Gradient Vector Flow Estimation
While the estimator for component v, in 50 exhibits bias
comparable to the corresponding, independently-derived
Doppler estimate computed from the same data (as discussed
in the results section), the empirical precision of both v, and
v, is significantly worse than the Doppler precision. This
suggests augmenting the estimator of equation 50 with infor-
mation containing the Doppler estimate with the goal of
improving the precision of the v, estimate. In the case of a
single plane wave transmission angle of 0 degrees (boresite),
this augmentation is achieved by constructing the model

64

(63

:Agdv+egd, (56)
where vector v, contains N-1 instantaneous Doppler-derived
velocity estimates with expectation v,, and where the diago-
nal observation error covariance is

2
I oy

0 (57
Zga =cov(egq) = ;o
d

To counteract aliasing issues with the elements v, (t) of
vv;(0), ..., v (N=2)], the instantaneous Doppler esti-
mates are computed as angular deviates referenced to their
mean value, so that

Va(t=0v(D+,(D), (8)

where v (1) is the Kasai autocorrelation-based blood Doppler
frequency estimator

Talt) = - axctama(L), (59)
4r
with
a()==, " Ls, 1t 60)
and where the blood differential axial velocity is
A a (61)
8va(r) = ——arctan[ss;_ a(1)*].
4r
estimate

The mean-square of the set dv (t) provides the
o2
SER
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62

82 = EN L ova(C)2.

N-1
Note 62 is an alternate method to computing the Doppler
variance as disclosed in the Doppler-based multi-angle vector
flow estimation method of the earlier section, which may be
more robust in certain conditions. This, along with the esti-
mate 51 computed earlier, provide the diagonal weighting

W=s,"" (63)

The vector velocity estimates are then computed by
weighted least squares in accordance with Gauss-Markov
theory, in analogy to 50 through 53 by substitution of A with
WA_,and y with W y,_,, to compute the blood flow vector
velocity estimates v_and v,.

The novel method described above in 56 through 63 is
generalized to address non-zero plane wave transmission
angle of 0,,, similarly to the bistatic range-rate Doppler model
using in the previous section for the multi-angle Doppler-
based vector flow estimation method, as disclosed below:

-g (64)
Yed =
Vd
Vi (65)
[ & & } eg
= ve [+
aeml  agnl e
=AgaV +€gd» (66)

where a,,,=(Y2)sin(0,,) and a_,,=(*2)[1+cos(0,,)], in analogy
to the section above disclosing the Doppler-based vector flow
estimation method. For the non-zero plane wave transmission
angle formulation, solution follows again similarly to that for
56, using 50 through 53 by substitution of A with W A, and
y with W y_, to compute the blood flow vector velocity
estimates v, and v..
Multiple-Lag Gradient-Based Estimation

As an alternate to augmenting the gradient-only method
described above, additional observations for the gradient may
be generated by concatenating gradients of amplitude-com-
pressed complex lags products s,s, ;*, atlags 1ofvalues 1. ..
L. The concatenation improves blood velocity vector estimate
precision, compared to the gradient-only method. The result-
ing vector flow estimation method uses no Doppler informa-
tion. In certain situations, this method may show better bias
performance than the Doppler-augmented methods. The
compressed complex lags products s s, ;* are computed at lag
values higher than one, so that at time t and lag 1,

rt,l:StSt—l>‘<‘Stst—l*‘71/2 (67)
for several I=1 . . . L, resulting in
—4 &1 8z |[ v« g1 (68)
Ym=| P |=Awvten=| T 1 ||ve|+] ¢
=& & &t €l

which is then solved by least squares in accordance with
Gauss-Markov theory, in analogy to 50 through 53 by substi-
tutionof A with A, and y withy,,;, to compute the blood flow
vector velocity estimates v, and v,.
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Gradient-Based, Multi-Lag, Multi-Angle Doppler-Aug-
mented Vector Flow Estimation

Disclosed here is the novel method of estimating blood
flow velocity vectors in the general case of multiple-angle
plane wave transmissions, using compressed complex lags
products s,s, ;* at multiple lags 1={0,1, . . . }, with augmenta-
tion by Doppler estimates. Here, the multiple-lag gradients,
for L. lags are computed from ensemble data collected at
multiple angles 6,, for m={1 . . . M}, and appended with
Doppler estimates v ,,,, with elements computed per equation
58 for the m-th transmission angle. The data acquisition is
therefore identical to that of the Doppler-base vector flow
velocity method disclosed in the earlier section. The collec-
tive model is then formed by extending definitions of equa-
tions 67 and 68 for distinct plane wave transmission angles 0,,

€9

Ymag =

&z11 €gll

egll

VX

8xLM  8zAM

aal ayl

= AmagV + Cmag. 0

where the diagonal error covariance matrix, with blocks con-
forming to corresponding subvectors of'y,,,,., is
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Zimag = cOV{emag) 71
o2y . 702, 17 .. T2
W2 o VoG Vol o 1ok 1oyl

where the diag operator constructs a diagonal matrix from a
vector argument, and where the (L+1)M variance compo-
nents Gglmz and o,,” of 72 are computed respectively as per
51 and 62. With the diagonal weighting Wmag:Zmag"l/ 2, the
blood flow vector velocity estimates v, and v, are then com-
puted by least squares in accordance with Gauss-Markov
theory, using 50 through 53 by substitution respectively of A
withW, A, andywithW, v, ...

Using the novel model structure of 72 and 70, the quantities
O and 0,2 of 72 may be iteratively improved along with
the blood flow vector velocity estimates v, and v, by straight-
forward application of the Helmert-type quadratic estimation
of variance components, well know in the field of geodetics,
thereby improving the precision of the computed v, and v..
Performance Testing Results

Performance of the some of the novel gradient-based meth-
ods described in the application is compared using a Doppler
string phantom, in a test conducted at two angles (-23 degrees
and level), at depths of 3.5 to four cm. The string speed was 40
cm/s. Data was collected and reconstructed on a 128-channel
VDAS ultrasound data acquisition system manufactured by
Verasonics, Inc. The results are shown in Table 1. For the
sloped string scenario, the table shows clear improvement in
lateral velocity precision by the Doppler-augmented and mul-
tiple-lag gradient processes, over the baseline gradient-only
vector flow estimation process. This improvement comes at
the expense of moderate increase in bias. For reference, per-
formance of the Kasai Doppler estimate of v, is shown as
well.

TABLE 1

String phantom evaluation results in mm/sec, showing bias (B),
precision (P), and confidence (C) in 3 standard deviations.

V =40 ci/s Inc. B C B C P C P C
Process eg. X X zZ Z X X Z Z
Grad. only -23 -28 7 24 3 146 7 70 4
Dopp. -23 n/a nfa 32 1 na wna 10 1
Grad. aug. -23 -34 5 31 1 120 6 11 2
M-lag, L =8 -23 -36 7 26 2 112 5 49 2
Grad. only 0 -60 7 1 6 117 18 120 18
Dopp. 0 n/a n/a 31 1 n/a na 9 1
Grad. aug. 0 =71 12 1 3 117 17 18 3
M-lag, L =4 0 -66 6 1 3 84 12 94 12

The gradient-based vector Doppler imaging system was
also evaluated on a volunteer to image the carotid artery, using
a Philips 1.7-4 linear array transducer. A frame of blood flow
vector velocity estimates computed by the Doppler-aug-
mented gradient approach is shown in FIG. 13 in arrow for-
mat. Velocity vectors are scaled for viewing. Subjective
evaluation of derived in-vivo image video sequences indi-
cates quality comparable to that of the multi-angle Doppler-
based vector flow imaging technique disclosed in the earlier
section.

Velocity Vector Display by Synthesized Particle Entrainment
(“Particle Flow™)

The velocity vectors estimated by the method described
above will produce vector-valued images, where each pixel
has two velocity components. Displaying the magnitude and
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direction of the vector estimates in two separate image win-
dows can reveal quantitative information through color-bar
legends, with the aesthetic appeal of conventional color flow
image presentation. However, it has been found that the
viewer struggles to perceive dynamic features simultaneously
present in two windows on the display screen. A visualization
is described below that intuitively conveys dynamic charac-
teristics of the vector pixel information in a single image
window.

This method simulates a collection of particles with motion
mimicking hypothetical particles entrained in the blood flow.
Particle motion is computed for each image frame period,
considering estimated velocity vector pixels nearest to the
synthesized particle positions. The particles are drawn on the
screen inside the detected flow regions, overlaying velocity
vector magnitude painted by conventional colorflow velocity
display. By this method, flow visualization emerges when the
viewer’s eye infers entrainment of the particles’ motion, as
their positions are updated with each new frame. The viewer
can arbitrarily scale the motion displayed on the screen to a
fraction of actual speed, effectively allowing real-time “slow-
motion” inspection of blood dynamics during high-velocity
events such as systole in the carotid artery.

A. Visualization Process Overview

In particle flow visualization, a randomly placed set of
particles fills all detected flow regions in the image. The
particle spatial density is statistically uniform. User prefer-
ence controls the spatial density of the particles.

At each frame, the set of particles are given motion, by
updating their positions according to nearby estimated veloc-
ity vectors. The position perturbation is thus the frame time
interval multiplied by the velocity vector. If the new particle
positions are not located at a pixel representing detected flow,
the particle is deemed outgoing, and is deleted from the
particle collection.

To check for new incoming particles entering detected flow
regions, a similar but contrary position is computed for each
flow pixel. Here the negative-time motion of each flow pixel
is calculated, using the negated velocity vector estimate. If the
backwards motion of the pixel is outside the flow region, new
particles are conditionally generated at those pixels. The new
“incoming” particles are then appended to the active particle
list. The condition for introducing incoming particles adapts
to maintain the desired particle density in flow regions, so that
incoming and outgoing particles are balanced in consider-
ation of changing flow region size. The overall density con-
dition is enforced by randomly selecting N, -of the incoming
particles, where N, -is the deficit of particles.

B. Visualization Process Description

The steps of the particle flow visualization method are
shown in the pseudo-code below:

Step 1: Initialize Particle List: conditionally create particle
at each detected flow pixels, with probability equal to density
setting D. Compile list of created particles j and their associ-
ated positions [x, z];.
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Step 2: Propagation: move each particle in particle list
forward in time by advancing its spatial position according to
its nearest coincident velocity vector estimate [¥,, v,], scaled
by desired “slowdown” factor.

Step 3: Test for flow membership: Quantize particle posi-
tions to nearest pixels; test new particle quantized positions
for flow region membership by evaluating coincident flow
detection label; delete particles not in flow from particle list.

Step 4: Back-propagation: move each flow pixels back-
ward in time by negated velocity estimates [-V,, —V,]. Quan-
tize positions to nearest pixels.

Step 5: Test back-propagated pixels for flow region mem-
bership; if not in a flow pixel, create new particles with
probability equal to density setting D.

Step 6: compute particle deficit/surplus;

Step 7: if deficit: generate sufficient number of new par-
ticles at random locations in flow to eliminate deficit.

Step 8: if surplus: select random subset of current particle
list to delete

Step 9: Draw all detected flow pixels on display frame, with
magnitude of velocity vector v, >=v 24+¥_* mapped by desired
color map.

Step 10: Draw all particles in current particle list at their
associated positions [x, z].

Step 11: Next Frame

FIG. 5 shows the relationship between the process func-
tional and data components.

The main stages of the visualization process are illustrated
in FIG. 7. Panel A shows a representative flow region with
flow pixels labeled in blue arrows.

In Panel B of FIG. 7, the initialization phase defines the
particle distribution:

Initialize:

1) User Sets Pixel Density D

2) Collect list of N, flow pixel locations

3) Npart:D*Npix

4) Choose N,,,,,, random subset of flow pixels

Panel C of FIG. 7 illustrates the forward propagation step:
Propagate Particle Positions from Frame k to k+1 (t=t+T,)

D) [X, 2l =%, 2]t TF v, V.,

2) Quantize particle positions to pixel indices

3) Test if particles in flow pixels; if true then delete particle

Panel D of FIG. 7 illustrates the back-propagation step:
Back-Propagate Pixel Positions from Frame k to k-1 (t=t-T)

Dy [X, 2]y =X, 2] TH Vs Voli

2) Quantize pixel positions

3) Test if pixels out of flow pixels; If true, create new
particle at [x, z], with probability D

FIG. 6 shows an example frame of the particle flow display
process from a carotid artery scan. Synthesized particles (or-
ange) overlay detected flow regions color-coded by velocity
vector magnitude (blue).

C. Visualization Process Implementation

The particle flow visualization process invention is shown
below implemented in the MatlLab programming language.

function [xMotion,yMotion ,trel,iiOut,iiOutIn2D,stateOut ] = ...
particleFlow6(vx,vy,displayThreshMap,t,flowParams,...
BmodeSize, TwoD2ColorSamplingRatio,state);

%particleFlow6: display particle flow based on vector velocity map

% Accounts for inflowing particles.

%single history image page, with tests and constant # particles

%signature:
% [xMotion,yMotion ,trel,iiOut,iiOutn2D ] = particleFlow5( ...
% vx,vy,displayThreshMap,t, flowParams)

% where:

sustained
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-continued

% vx, vy ~ MxN velocity component map
% displayThreshMap ~ spatial relative probability map of particle
%  creation
% the folowing are scalar quantities:
% t = time index;
% flowParams - structure with the following members:
%  density,displaySensitivity,Nhist
% TwoD2ColorSamplingRatio - set to 1.0 if
%.
% where:
% density = avg spatial density of new particles
% displaySensitivity = scale to particle creation probability
threshold
% Nhist = state history buffer size in frames.
[
% Outputs:
% xMotion,yMotion : cell arrays of X and Y particle position snapshots
in
% trajectory history.
% trel - relative times of history snapshots
% 1i0ut,iiOutIn2D - “lex” position indices of particels in colorbox,
and
% image (if differently sized than colorbox).
% John Flynn 9/28/2010
debugOn =0;
asserts = 1; %set to check for error conditions
nanFix = 1; %set to fix NaNs in vx,xy
persistent debugcounter
persistent Mpart Npart
detIndexCompute = 1;
if nargin<g,
persistent s
else
if isempty (state),
state.s = [ ];
end
s = state.s;
end
cboxSize = size(displayThreshMap);
if nargin<6,
BmodeSize=[ ];
end
if isempty(BmodeSize),
BmodeSize= cboxSize;
end
if nargin<7,
TwoD2ColorSamplingRatio=[ ];
end
if isempty(TwoD2ColorSamplingRatio),
TwoD2ColorSamplingRatio= 1;
end
%assumes cbox cannot be bigger/outside BW
colorboxIsSmaller = “isequal(cboxSize,BmodeSize);
if colorboxIsSmaller,
cboxXOffset = round( ...
BmodeSize(2)/2 - cboxSize(2)/2*TwoD2ColorSamplingRatio ) ;
else
cboxXOffset = 0;
end
[M,N]=size(vx);
if “isequal([M,N],size(vy)) | “isequal ([M N],cboxSize),
[M,N],size(vy)
[M N],cboxSize
error(‘sizes incorrect’)
end
if nanFix,
nind1=find(isnan(vx));
vx(nind1)=0.0;
nind2=find(isnan(vy));
vy(nind2)=0.0;
if asserts,
if “isempty(nind1)Tisempty(nind2)
disp([mfilename,’: condition number excess. ’])
end
end
end
if asserts,
foundnans = 0;
if any(isnan(vx(:)))

24
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-continued

foundnans=foundnans+1;
end
if any(isnan(vy(:)))
foundnans=foundnans+1;
end
if any(isnan(Mpart(:)))
foundnans=foundnans+1;
end
if any(isnan(Npart(:)))
foundnans=foundnans+1;
end
if foundnans™=0,
disp([mfilename,’:assert:foundnans=*,num?2str(foundnans)])
if debugOn>0,
keyboard
end
end
end
%extract params from struct:
density = flowParams.density ;
rejectSensitivity = flowParams.displaySensitivity ;
Nhist = flowParams.Nhist ;
if Nhist ™= 1, error(‘only single history Nhist==1 allowed’),end
velocityScale=flowParams.velocityScale;
%find flow locations for this frame:
%subset of x,y positions which are flow:
flowind=find( display ThreshMap ~=0);%flowlist:
NumFlow = length(flowind);
[Mflow,Nflow]=ind2sub([M N],flowind);
NumParticlesInFrame=round(density* NumFlow);%number of particles used
if isempty(Mpart),
Yoinit:
%randomize selection of flow indices
[~ tempind]=sort(rand(1,NumFlow));
%a random selection from flow indices to use as particles.
tempind=tempind(1:NumParticlesInFrame);
Mpart=Mflow(tempind);
Npart=Nflow(tempind);
end
partind=sub2ind([M,N],round (Mpart),round (Npart));
if isempty(partind),
[xMotion,yMotion,partind,Mpart,Npart,iiOut,iiOutIn2D,trel ]=deal([ ]
)
return
end
%current particles: - - - - - - - - - - - - - -
%propagate all current particles:
MpartNew = Mpart — velocityScale*vy( (partind(:)));
NpartNew = Npart + velocityScale*vx ( (partind(:)));
%quantize positions to indices
iMpartNew = round(MpartNew);
iNpartNew = round(NpartNew);
%check if new positions still in cbox
particlesOut = ...
iMpartNew<1 | iMpartNew>M | iNpartNew<1 | iNpartNew>N ;
outind = find(particlesOut);
%remove particles which are out of cbox, from list:
iMpartNew(outind) = [ ];
iNpartNew(outind) = [ ];
partind (outind) = ];
%check if new particles still in flow:
newind =sub2ind ([M,N],iMpartNew,iNpartNew);%convert row, col to index
detMap = displayThreshMap(newind);
detind = find(detMap~=0); %these in flow regions
missind = find(detMap==0); %these are out of flow regions
%remove particles which are out of flow region,, from list:
iMpartNew(missind) = [ ;
iNpartNew(missind) = [ ];
partind(missind) = [ ];
NumPartRemaining = length(iMpartNew);
NumOutflow = length(outind) + length(missind);
%% %0%%%0%%%0%%%0%6%% %% %% %% %% % %0%06% %% %% %% % % %% %
%Check for inflow (immigrant) particles: - - - - ------
%propagate (backwards) all current particles:
% did they come from outside box or flow region?
%need to compute unit-length motion vectors:
Vmag=sqrt(vy.A2 + VX.A2);
%vmag(vmag==0)=1; %handle zero magnitude case
vyu = vy./vimag ; vXu = vx./vmag ;
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%unit-length motion (any motion from adjacent pixels to flow pixels)
%using unit motion to find adjacent pixels in dir of flow
MpartInfluxNewU = Mflow + vyu(flowind);
NpartInfluxNewU = Nflow — vxu(flowind);
%quantize positions to indices
iMpartInfluxNewU = round(MpartInfluxNewU);
iNpartInfluxNewU = round(NpartInfluxNewU);
%check which outside colorbox (therefore inflowing)
particlesInfluxOut = iMpartinfluxNewU<1 | iMpartInfluxNewU>M | ...
iNpartinfluxNewU<1 | iNpartInfluxNewU>N ;
%need to add original corresponding to these
outIndInflux = find(particlesInfluxOut);
% particles to display
MpartInfluxDisp = Mflow(outIndInflux) ...
- velocityScale*vy(flowind(outIndInflux));
NpartInfluxDisp = Nflow(outIndInflux) ...

+ velocityScale*vx(flowind(outIndInflux));

partind3A = flowind(outIndInflux);

%these still in colorbox:

%check these for inside flow region

stillinIndInflux = find("particlesInfluxOut);

%check which outside flow (therefor inflowing)

newindInflux = sub2ind([M,N], ...
iMpartInfluxNewU(stillinIndInflux), ...
iNpartInfluxNewU(stillinIndInflux));%convert row,col to index

detMap = displayThreshMap(newindInflux);

outindFlowInflux = find(detMap==0); %these are out of flow regions,

add

% originals to display list

%display/track subset of new candidate inflow particles:

[",subsetInd]=sort(rand(1,length(outindFlowInflux)));

NumInflow = min(NumOutflow,round(density * length(outindFlowInflux)));

subsetInd=subsetInd(1:NumInflow);

outindFlowInflux = outindFlowInflux(subsetInd);

outindFlowInfluxSub = stillinIndInflux(outindFlowInflux);

MpartFlowInfluxDisp = Mflow(outindFlowInfluxSub)...

- velocityScale*vy(flowind(outindFlowInfluxSub));
NpartFlowInfluxDisp = Nflow(outindFlowInfluxSub) ...

+ velocityScale*vx(flowind(outindFlowInfluxSub));
partind3B = flowind(outindFlowInflux);

NnewFromInflow = length(partind3A) + length(partind3B);

%% %0%%%0%%%0%%%0%0%% %% % %0 %% %0% % %0%6% %% %% %% %% %
%replace emigrated particles with newly

%created particles randomly inside flow region:

numToCreate = NumParticlesInFrame - ...

(NumPartRemaining + NnewFromInflow) ; %account for immigrants
%generate new particles somewhere inside flow region:
[~,partind2]=sort(rand(1,NumFlow));%randomize selection of flow

indices
%a random selection from flow indices to use as particles.
partind2=partind2(1:numToCreate);
Mecreate=Mflow(partind2);
Nereate=Nflow(partind2);
%unquantized positions:
MpartNew(outind)=[ ];NpartNew(outind)=[ ];
MpartNew(missind)=[ ];NpartNew(missind)=[ ];
%update particle lists
Mpart = clip( ...

[MpartNew;Mcreate;MpartFlowInfluxDisp;MpartInfluxDisp ],[1 M]);
Npart = clip(...

[NpartNew;Ncreate;NpartFlowInfluxDisp;NpartInfluxDisp ],[1 NJ);
%cull extra particles in mem. (note this is not tracked by iiOut)
maxParticles = round(prod(cboxSize)/2);

NumParticles = length(Mpart);
if NumParticles>maxParticles,

[~,thinInd]=sort(rand(1 ,NumParticles ));

NumThin = NumParticles—-maxParticles;

thinInd=thinInd(1:NumThin);

Mpart(thinInd)=[ ];

Npart(thinInd)=[ ];

End
iiOut = [...

partind(:); ...

flowind(partind2(:)); ...

partind3A; ...

partind3B(:)];

%outputs:
xMotion = Npart;
yMotion = Mpart;
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%
if colorboxIsSmaller,
[M2,N2] = ind2sub( [M N, iiOut);
iiOutIn2D ={sub2ind(BmodeSize,M2, N2+ cboxXOffset)};
end
trel=[ ];
end Y%oparticle flow synthesis
%0%%%0%%%%%0%%%%%0% %% %% % %% % %% %%
function y = clip(x,bnds);
low =bnds(1);
hi = bnds(2);
y = min(max(x,low),hi);
end %

15
D. Visualization Process Usage and Test

This section gives a MatLab code example of using and
testing of the particle flow visualizer invention.

function varargout=particleflow__demo;
% particleflow__demo: Demonstrate use and operation of
% the particle flow display algorithm
% “particleflow6.m” for vector doppler data.
%
% Generates simulated vector flow data images and invokes the
% vector flow display invention “particleflow6.m” .
%john flynn 10/13/2011
persistent hspat spnoiseind spnoise
Nframes = 4000;
cmapCFI = grayscaleVDImap;
Mbw= 256;Nbw= 256;
bwsize = [Mbw Nbw];
M=Mbw;N = floor(Nbw/2);
cboxsize = [M NJ;
BW = conv2(rand(Mbw,Nbw),ones(10)/100,’same’);
interpFactBW = 1;
%simulate the flow data:
Vxy = .2*kron(exp(2*pi*i*[.13,.8;-.48 , .05]), ones(M/2,N/2));
Vx=real(Vxy);
Vy=imag(Vxy);
Vx = filter(ones(33,1)/33,1 filter(ones(33,1)/33,1,Vx));
Vy = filter(ones(33,1)/33,1 filter(ones(33,1)/33,1,Vy) );
Pac=kron([0 1;1,0],ones(M/2,N/2));
minVelBin = 5;
maxVelColorBin=253;
%
partFlowParam.density = 1/10;
partFlowParam.displaySensitivity = .3;
partFlowParam.Nhist=1 ;
partFlowParam.velocityScale = 1 ;
for k=1:Nframes,
Mo2 = round(M/2); No2= round(N/2);
Pac=zeros(M,N);
dbox = round(min(M,N)/6*(cos(k/100)*.5+2));
Pac(Mo2-dbox:Mo2+dbox,No2-dbox:No2+dbox)=1;
[Xh,Yh, trel,indPart,indPartIN2D ]= ...
particleFlow6(Vx,Vy,Pac k,partFlowParam,bwsize,interpFactBW );
BWk = BW;
cboxXOffset = round( bwsize(2)/2 — cboxsize(2)/2*interpFactBW ) ;
detInd = find(Pac™=0);
[ii2, jj2 ] = ind2sub( cboxsize, detInd );
[iihIn2D2] = sub2ind( bwsize, ii2, jj2+cboxXOffset );
if “isempty(ithIn2D2),
BWk(iihIn2D2) = 128 + 128/2 + minVelBin ;
end
BWk(indPartIN2D{1}) = maxVelColorBin;
image(BWk),colormap(cmapCFI)
drawnow
end
end %main %% %%6%%%%%% %% %% %%0%6%% %% %% %% %% % %% % %% %% %% %%
function [emap] = grayscaleVDImap
% Function to create colormap for vector display.
%parse input for alternate map loading
x = [linspace(0,.2,64), ...
linspace(.2,0,64),linspace(.25,1,128)];
z = [sqrt(linspace(1,.001,128)),...
linspace(.03,.2,128) J;z(end) = 1;
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y= .9*linspace(—1,1,256).A2;
cfimap01 = [x(:),y(:),2()];
dopplerSubMap=cfimap01;
cmap = zeros(256,3);

% load linear greyscale in 1:128
cmap(1:128,1) = (0: (1/127):1);
cmap(1:128,2) = (0: (1/127):1);
cmap(1:128,3) = (0: (1/127):1);
% load color map in 129:256
cmap(129:256,:) = dopplerSubMap(1:2:256,:);
end

Display of Measured Blood Flow Properties Derived from
Blood Flow Velocity Vectors.

1. Method for Display of Blood Flow Vector Velocity Imagery
as the Quantitative Velocity Spectrum

The Spectral Doppler method reports the spectrum of flow
velocity and how it varies over the cardiac cycle, and it usually
presents the spectrum graphically as a spectrogram and audi-
bly through loudspeakers. Moreover, the Spectral Doppler
method computes the power spectrum of flow velocity
obtained over a sequence of transmissions, and usually pre-
sents the spectrum graphically as a spectrogram and audibly
through loudspeakers. Access to the full time-varying spec-
trum of blood velocities allows accurate calculation of mean
and peak flow velocities within the sample region and pro-
vides the most complete characterization of flow disturbances
of all the ultrasound Doppler methods.

One common display function associated with Spectral
Doppler is frequency scale correction, to provide quantitative
measurements from the computed spectra, thereby producing
the blood velocity spectra and spectral trace. Typically the
spectral frequency axis is corrected by the cosine of the angle
between an estimate of the flow direction, and the direction of
the transmitted ensemble used in production of the Doppler
spectrum.

Here a method of providing the quantitative blood flow
property, the velocity spectrum is disclosed, comprising:
using the blood flow velocity vector angle estimates, from
pixels coincident to the Spectral Doppler sample volume, as
spectral trace frequency axis corrective scale factors, specifi-
cally the reciprocal of the bistatic range rate model for the
spectral ensemble angle, i.e. 1/[sin(_a)cos(b)+(1+cos(a))sin
(b)], where a is the spectral plane wave transmission angle,
and b is the blood flow velocity vector estimated by methods
disclosed in the earlier sections. Traditionally, such correc-
tion is provided by operator estimation from gross vascular
geometry, and ignores fine-scale spatio-temporal features of
the true blood flow. In this disclosure, the quantitative mea-
surement of blood velocity spectrum is provided at a time
resolution equal to the spectral frame-rate, and at a pixel
spatial resolution. The blood velocity spectrum image, thusly
scaled, is then displayed analogously to the conventional
spectral Doppler image trace format, with the vertical axis
labeled in velocity units of distance per unit time.

2. Method for Display of Blood Flow Vector Velocity Imagery
as the Quantitative Instantaneous Blood Flow Rate Through a
Vessel

Blood flow rate through a vessel is measured in units of
volume per unit time, e.g. ml/sec. Using the blood flow veloc-
ity vector estimates computed over a surface that is a slice of
3D reconstructed voxels bisecting a vessel in the tissue, the
area integral of the blood flow velocity vector estimates pro-
jected to the normal vectors of their associated slice voxels,
where the integration region is taken over the bisecting sur-
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face slice, provides a quantitative measure of instantaneous
blood flow rate through the vessel. The instantaneous blood
flow rate image is then displayed analogously to the conven-
tional spectral Doppler image trace format, with the vertical
axis labeled in flow rate units of volume per unit time.
Conclusion

The vector Doppler imaging system was tested on a vol-
unteer to image the carotid artery and nearby neck vasculature
using a Philips [.7-4 linear array transducer.

FIG. 8 is a system level block diagram that represents a
high-level system architecture 70 for implementing the pro-
cesses of the present disclosure. It is to be understood that this
is merely one representative embodiment, and the illustrated
architecture 70 is not a requirement for all embodiments of
the present disclosure.

The architecture 70 includes a host computer 72 coupled
via a PCl-express 74 to a multi-channel transceiver and data
acquisition system 76. The host computer 72 has a user inter-
face and control 78, and a display 80, both coupled to a
processor 82 that utilizes the pixel-based application process-
ing software 84. The multi-channel transceiver and data
acquisition system 76 hardware are coupled to an ultrasound
transducer 86 that is used to image a region 88 in an acoustic
medium 90. Because these components are readily commer-
cially available, they will not be described in detail herein.
Pixel Oriented Processing

The software-based method and system architecture in
accordance with one embodiment of the present disclosure
implements all real-time processing functions in software.
The proposed architecture is shown schematically in FIG. 9.

The only custom hardware component in the software-
based system is a plug-in module to the expansion bus of the
computer that contains the pulse generation and signal acqui-
sition circuitry, and a large block of expansion memory that is
used to store signal data. The signal acquisition process con-
sists of amplifying and digitizing the signals returned from
each of the transducer elements following a transmit pulse.
Typically, the only filtering of the signals prior to digitization,
other than the natural band-pass filtering provided by the
transducer itself, is low pass, anti-aliasing filtering for A/D
conversion. The signals are sampled at a constant rate con-
sistent with the frequencies involved, and the digitized data
are stored in memory with minimal processing. The straight-
forward design of the signal acquisition allows the circuitry to
be implemented with off-the-shelf components in a relatively
small amount of board area.

A more detailed look at the plug-in module is shown in
FIG. 10. Multiple acquisition channels are shown, each com-
posed of a transmitter, receiver pre-amplifier, A/D converter,
and memory block. During receive, the transducer signals are
digitized and written directly to the individual memory
blocks. The memory blocks are dual-ported, meaning they
can be read from the computer side at the same time acquisi-
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tion data is being written from the A/D converter side. The
memory blocks appear as normal expansion memory to the
system CPU(s). It should be noted that the size of the plug-in
module is not limited to the normal size of a standard com-
puter expansion card, since the system is preferably housed in
a custom enclosure. Also, multiple plug-in modules can be
used to accommodate a large number of transducer elements,
with each module processing a subset of the transducer aper-
ture.

The components for the plug-in module, including ampli-
fiers, A/D converters and associated interface circuitry, and
the needed components for transmit pulse generation and
signal acquisition are readily commercially available compo-
nents and will not be described in detail herein. The memory
block needed for RF data storage of echo signals obtained
from received echoes is essentially the same circuitry as
found in commercially available plug-in expansion memory
cards, with the addition of a second direct memory access port
for writing the digitized signal data. (The received echo signal
data is generally referred to as RF data, since it consists of
high frequency electrical oscillations generated by the trans-
ducer.) The memory is mapped into the central processor’s
address space and can be accessed in a manner similar to other
CPU memory located on the computer motherboard. The size
of'the memory is such that it can accommodate the individual
channel receive data for up to 256 or more separate transmit/
receive cycles. Since the maximum practical depth of pen-
etration for round trip travel of an ultrasound pulse in the body
is about 500 wavelengths, a typical sampling rate of four
times the center frequency will require storage of as many as
4000 samples from an individual transducer element. For a
sampling accuracy of 16 bits and 128 transducer channels, a
maximum depth receive data acquisition will require approxi-
mately one megabyte of storage for each transmit/receive
event. To store 256 events will therefore require 256 MB of
storage, and all totaled, a 128 channel system could be built
on a few plug-in cards.

Another aspect of the software-based ultrasound system is
the computer motherboard and its associated components.
The motherboard for the proposed design should preferably
support a multi-processor CPU configuration, for obtaining
the needed processing power. A complete multi-processor
computer system, complete with power supply, memory, hard
disk storage, DVD/CD-RW drive, and monitor is well-known
to those skilled in the art, can be readily commercially pur-
chased, and will not be described in greater detail.

A software-based ultrasound system must truly achieve
“high-performance,” meaning image quality comparable to
existing high-end systems, in order to provide a significant
benefit to the health care industry. This level of performance
cannot be achieved by simply converting the flow-through
processing methods of current systems to software imple-
mentations, since a simple addition of all the processing
operations needed for one second of real-time imaging in the
flow-through architecture gives a number that exceeds the
typical number of operations per second currently achievable
with several general purpose processors. Consequently, new
processing methods are required that achieve a much greater
efficiency than the flow-through methods.

In one embodiment of the software-based ultrasound sys-
tem architecture of the present invention, the input data for
signal and image processing consists of the set of RF samples
acquired from individual transducer channels following one
or more transmit events. For an example, let us consider a
typical 2D imaging scanning mode with a 128 element linear
transducer array, as shown in FIG. 11.
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In this case, a ‘transmit event’ would consist of timed
pulses from multiple transducer elements to generate a plu-
rality of acoustic waves that combine in the media to form a
focused ultrasound beam that emanates outwards from an
origin point on the transducer at a specific element location.
Multiple transmit events (128 in all) produce ultrasound
beams that are sequentially emitted incrementally across the
width of the transducer face, thus interrogating an entire
image frame. For each of these transmit beams, the received
echo data are collected from each of the 128 receiver elements
in the transducer and organized into a data array with each
column representing the sampled echo signal received by the
corresponding transducer element. Thus, each array has 128
columns, corresponding to the 128 transducer elements, and
a number of rows corresponding to the number of samples in
depth that were taken (in this case, we will assume 4096 rows
resulting in 4096 samples). These 128 data arrays then con-
stitute an RF data set that is sufficient to produce one complete
image frame.

It is worth noting that in the flow-through architecture, the
RF data set described above does not even exist (at least not all
at one time), since the beam and image formation takes place
as the data streams in from the transducer. In other words, as
the data return to each element after a transmit event, they are
processed and combined (referred to as beam forming) to
generate a single RF signal representing the focused return
along a single beam (scan line). This RF signal is processed
(again in real-time) into echo amplitude samples, which are
stored in a memory array. When all beam directions have been
processed, the echo amplitude data are then interpolated and
formatted into a pixel image for display. Since all processing
takes place in real-time, the processing circuitry must be able
to ‘keep up’ with the data streaming in from the transducer
elements.

Inthe software-based architecture of the present invention,
all input data is stored prior to processing. This uncouples the
acquisition rate from the processing rate, allowing the pro-
cessing time to be longer than the acquisition time, if needed.
This is a distinct advantage in high frequency scans, where the
depth of acquisition is short and the sample rate high. For
example, a 10 MHz scan head might have a useable depth of
imaging of around four centimeters. In this case, the speed of
sound in tissue dictates that each of the 128 transmit/receive
events acquire and store their data in 52 microseconds, a very
high acquisition data rate. In the flow-through architecture,
these acquisition data would be formed into scan lines in
real-time at high processing rates. In the software-based
architecture of the present invention, the storage of RF data
allows the processing to take as long as the frame period of the
display, which for real-time visualization of tissue movement
is typically 33 milliseconds (30 frames/second). For 128 pixel
columns (the rough analogy to scan lines), this would allow
258 microseconds of processing time per column, rather than
the 52 microseconds of the flow-through architecture. This
storage strategy has the effect of substantially lowering the
maximum rate of processing compared with the flow-through
architecture for typical scan depths.

The storing of input data reduces the maximum processing
rates but doesn’t necessarily reduce the number of processing
steps. To accomplish this, a new approach to ultrasound data
processing is taken. The first step is to recognize that the
ultimate goal of the system when in an imaging mode is to
produce an image on the output display. An ultrasound image
has a fundamental resolution that depends on the physical
parameters of the acquisition system, such as the frequency
and array dimensions, and can be represented as a rectangular
array of pixel values that encode echo amplitude or some
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other tissue (acoustic) property. The density of this rectangu-
lar pixel array must provide adequate spatial sampling of the
image resolution. It is recognized that display images need
not consist only of rectangular arrays of pixels, but could
consist of any arbitrary set of pixels, representing different
geometric shapes. The next step is to start with one of the
pixels in this image array and consider which sample points in
the RF data set contribute to the calculation of this pixel’s
intensity, and determine the most efficient way of accessing
and processing them. This approach is a completely different
approach than the one utilized by the current flow-through
architecture because only information that contributes to pix-
els onthe display needs to be processed. In the approach of the
present invention, a small region on the display image will
take less overall processing time than a large image region,
because the small region contains fewer pixels. In contrast,
the flow-through processing methods must be designed to
handle the maximum data stream bandwidths, independent of
the image region size.

After processing the pixel array required to adequately
represent the ultrasound image, the array can be rendered to
the computer display at an appropriate size for viewing. The
graphics processor of the computer, requiring no additional
CPU processing, can typically carry out this operation, which
consists of simple scaling and interpolation.

We next consider the processing strategy for a single pixel
of our ultrasound image. In this discussion, we will assume
that our objective is to obtain the echo intensity at the corre-
sponding spatial location of the pixel with respect to the
transducer array. Other acoustic parameters may be similarly
obtained. Our first step is to find the region of acquisition RF
data containing samples that contribute to the echo intensity
calculation. To accomplish this for the scanning method of
FIG. 11, we first find the acquisition scan line that comes
closest to intersecting the pixel location, and then use the
corresponding individual element data array. FIG. 12 shows
this mapping process for an example pixel in an ultrasound
image. In FIG. 12, the indicated pixel maps to the closest
acquisition line of the scan, which in this case is scan line 4,
whose RF data resides in the fourth individual element RF
data array (which represents data collected from the fourth
transmit/receive event). More than one RF data array could be
chosen as contributing to the pixel signal, but for this example
we will consider only a single data array.

Out next step is to map out the region in the individual
element array containing samples that contribute to the pix-
el’s intensity calculation. This mapping process is fairly com-
plex and depends on several factors. The transducer elements
each have a region of sensitivity that determines how they will
respond to a signal returning from a particular point in the
image field. For a given image point, only elements that have
sensitivities above a predetermined threshold need be consid-
ered, since if the sensitivity is too low, an element will not
contribute useful information to the pixel’s quantity. This
sensitivity threshold then determines the number of element
data columns to include in the mapped region.

The starting depth of the mapped data region or subset is
determined by the arrival time of the returning echo at each
individual transducer element. As shown in FIG. 12, the
image point signal for elements further away from the image
point is captured later in time, and so the starting point of the
data set is deeper in memory. Finally, the depth range needed
for the data in the mapped data region is dependent on the
duration of the transmit pulse generated. Longer transmit
pulses will excite the image point for a longer period of time,
generating echo signals that extend over a larger depth span of
the RF memory.

25

40

45

65

36

Fortunately, many of the factors that go into determining
the region or subset of mapped data for a given pixel can be
pre-computed for a given pixel grid, since this grid does not
change over the multiple frames of a real-time image
sequence. Using pre-computed factors, the mapped data
region for a given pixel can be rapidly and efficiently deter-
mined, saving considerable computations during real-time
imaging.

After selecting out the subset of pixel mapped RF data, we
can organize it into a matrix, RFP,,,,, as shown below.

nms

apap ... ik
a1

RF Py = | -+

aji ... Qi

The notation ‘P,,,,” refers to the image pixel in row n, column
m. The matrix columns are the vertical bars of FIG. 12 where
it is assumed that the number of samples, j, in each vertical bar
is the same. The number of samples, j, is dependent on the
range of RF data in time needed for capturing the signal
generated by the transmit pulse. The index, k, is the number of
channels in the RF data array that have adequate signal
strength from to the image point to participate in the intensity
calculation.

Accordingly, a system using the foregoing can be imple-
mented to carry out the methods, processes, and algorithms of
the present disclosure. In one representative embodiment an
ultrasound imaging system is provided that includes a module
adapted to generate an acoustic signal, receive at least one
echo of'the acoustic signal at a plurality of receiving elements
in the module and obtain a plurality of echo signals therefrom;
and a processor coupled to the module. The processor is
configured to:

extract information from the plurality of echo signals;

construct a blood flow vector velocity signal using the

extracted information by wall filtering the extracted
information; using the wall-filtered information to form
autocorrelation values and Doppler frequency esti-
mates; partitioning of a bistatic range-rate model with
aliasing interference into linear and nonlinear parts; and
solving said model by a weighted least squares scheme,
the blood flow vector velocity signal corresponding to at
least one point in the medium; and

detect the presence of blood flow at a display device pixel

by qualifying blood flow vector velocity signals through
a series of tests on values of quality metrics produced as
byproducts of the blood flow vector velocity estimation
procedure. A display device is configured to generate
blood flow vector velocity imagery from the blood flow
vector velocity signals.

In accordance with another aspect of the present disclo-
sure, the system can be provided that includes a module
adapted to generate an acoustic signal, receive at least one
echo of'the acoustic signal at a plurality of receiving elements
in the module and obtain a plurality of echo signals therefrom;
and a processor coupled to the module. The processor is
configured to:

extract information from the plurality of echo signals;

construct a blood flow vector velocity signal using the

extracted information by the blood flow vector velocity
signal corresponding to at least one point in the medium,
the constructing including the following steps of (a) wall
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filtering the extracted information; (b) using the wall-
filtered information to form compressed format conju-
gate-lagged products; and (c) forming a vector velocity
measurement model by using space-time gradient
operation on the products, and solving said model by a
weighted least squares scheme;

detect the presence of blood flow at a pixel by qualifying

blood flow vector velocity signals through a series of
tests on values of quality metrics produced as byprod-
ucts of the blood flow vector velocity estimation proce-
dure.

A display device is included that is configured to display
blood flow vector velocity imagery from the blood flow vec-
tor velocity signals.

The various embodiments described above can be com-
bined to provide further embodiments. Aspects of the
embodiments can be modified, if necessary to employ con-
cepts of the various patents, applications and publications to
provide yet further embodiments.

These and other changes can be made to the embodiments
in light of the above-detailed description. In general, in the
following claims, the terms used should not be construed to
limit the claims to the specific embodiments disclosed in the
specification and the claims, but should be construed to
include all possible embodiments along with the full scope of
equivalents to which such claims are entitled. Accordingly,
the claims are not limited by the disclosure.

The invention claimed is:
1. A method of producing blood flow velocity vector imag-
ery, comprising:
emitting at least two unfocused plane wave acoustic signals
at at least two specific angles to a transducer array into a
medium over substantially an entire field of measure-
ment;
receiving scattered and reflected ultrasonic signals on the
transducer array in response to the emission;
processing the received ultrasonic signals to extract infor-
mation to construct a blood flow vector velocity signal
by:
wall filtering the extracted information;
using the wall-filtered information to form autocorrela-
tion values and Doppler frequency estimates;
partitioning of a bistatic range-rate model, f=+b+e,
where the flow velocity vector at the image point is
v=[v_, v_]5, b represents bias due to aliasing, e is
stochastic error, and the model matrix A is dimen-
sioned [Mx2] and has rows a,,(0,,), where:

am = %[sin(@m), 1 +cos(8,,)]
with explicit terms for bias due to aliasing of Doppler fre-
quencies, into linear and nonlinear parts; and
solving the partitioned model by the weighted least squares
scheme for the blood flow vector velocity signal v cor-
responding to at least one point in the medium;
generating blood flow vector velocity signals;
detecting the presence of blood flow corresponding to a
display device pixel by qualifying blood flow vector
velocity signals through a series of tests on values of
quality metrics produced as byproducts of the blood
flow vector velocity estimation procedure; and
generating on a display device blood flow vector velocity
imagery from the blood flow vector velocity signals.
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2. The method of claim 1, wherein the emitting and receiv-
ing comprise transmitting multiple plane wave acoustic sig-
nals and receiving the scattered and reflected ultrasonic sig-
nals in ensembles with a timing consistent with Doppler
measurements and with a dwell at one or more discrete angles
to the transducer array into the medium, with respect to the
transducer coordinates, of transmitted plane wave propaga-
tion.

3. The method of claim 2, comprising preprocessing the
received ultrasonic signals independently for each transmis-
sion angle using one or more of wall filtering, auto-correla-
tion, and Doppler frequency estimation.

4. The method of claim 3, comprising assembling Doppler
frequency estimates from all transmission angles in a specific
bistatic range-rate model and computing an inference of
blood flow vector velocity estimates within the field of mea-
surement.

5. The method of claim 4, comprising partitioning of the
bistatic range-rate model with aliasing bias vectors into linear
and nonlinear parts.

6. The method of claim 5, comprising using variance com-
ponents as quality estimates for frequency estimates corre-
sponding to each of the plane wave angle data.

7. The method of claim 6, comprising computing Doppler
frequency estimate variance, in analogy to the variance of the
angle associated with a complex Rice random variable, from
Doppler signal-to-noise ratio.

8. The method of claim 6, comprising computing Doppler
frequency estimate variance from instantaneous frequency
deviates referenced to mean frequency.

9. The method of claim 6, comprising modeling of hypoth-
esized aliasing bias of Doppler frequency and providing con-
sequent corrective adjustments on individual plane wave
angle channels affected by aliasing to allow correct interpre-
tation of aliasing up to twice the pulse rate frequency and
prevent image blackout during Doppler aliasing events typi-
cally appearing during the systole cardiac phase.

10. The method of claim 9 comprising the providing of
restrictions to hypothesized aliasing bias vectors into adja-
cent plane wave angles, in groups of one or more aliased plane
wave angle channels in the model.

11. The method of claim 5 comprising using Doppler fre-
quency variances at each plane wave emission angle to for-
mulate a weighted least squares estimation scheme that com-
putes blood flow vector velocity estimates and an optimal
hypothesized aliasing bias vector.

12. The method claim 1, further comprising:

performing blood flow detection by qualification tests on

by-products of the blood flow vector velocity estimation

procedure, comprising:

a. testing computed values of blood flow vector velocity
estimate precision;

b. testing computed values of combined power of lag-
one autocorrelation values;

c. testing computed values of normalized velocity mag-
nitude;

d. testing computed values of autocorrelation residual;
and

e. testing computed values of whitened frequency
residual resulting in declaration of pixels being dis-
played as flow information if qualified by the tests.

13. The method of claim 1, comprising:

correcting a Spectral Doppler image trace frequency scale

with a reciprocal of the bistatic range-rate model; and
generating on a display device blood flow vector velocity
imagery from the blood flow vector velocity signals as a
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quantitative blood velocity spectrum from the correcting
of the Spectral Doppler image trace frequency scale.
14. The method of claim 1, comprising:
generating on a display device blood flow vector velocity
imagery from the blood flow vector velocity signal, as
quantitative instantaneous blood flow rate by:
integrating blood flow velocity vectors, projected to the
surface normal, over a voxel surface slicing the ves-
sel; and
displaying the result as instantaneous flow rate, on a
format analogous to Spectral Doppler Image, with the
vertical axis labeled in flow rate units.
15. A method of producing blood flow velocity vector
imagery, comprising:
emitting unfocused acoustic signals at at least one angle to
a transducer into a medium over substantially an entire
field of measurement;
receiving scattered and reflected ultrasonic signals on a
transducer array in response to the emission;
processing the received ultrasonic signals to extract infor-
mation to construct a blood flow vector velocity signal
corresponding to at least one point in the medium, the
constructing including:
wall filtering the extracted information;
using the wall-filtered information to form compressed
format conjugate-lagged products, wherein the con-
jugate-lagged products F(p, t, 1) of a vector of time
samples s(t), at pixel image point p, of signal data
vector § are computed in compressed amplitude for-
mat, for one or more lags 1-0,1-1, .. . as

F(p,t )=8(0)$(t-D)*13(D)3(e-1)*17*72

wherein the terms S(t)s(t-1)*

are summands of the sample autocorrelation at lag 1;

forming a vector velocity measurement model by using
space-time gradient operation on the products, and
solving said model by a weighted least squares
scheme;

detecting the presence of blood flow at a pixel by quali-
fying blood flow vector velocity signals through a
series of tests on values of quality metrics produced as
byproducts of the blood flow vector velocity estima-
tion procedure; and

generating on a display device blood flow vector veloc-
ity imagery from the blood flow vector velocity sig-
nal.

16. The method of claim 15, comprising preprocessing
with wallfiltering, and computing compressed-format conju-
gate-lagged products of resulting ensemble data, at lags of O
and higher values.

17. The method of claim 16, wherein the processing com-
prises augmenting the blood flow 1Q data with Doppler-de-
rived velocity estimates.

18. The method of claim 15 comprising computing the
space-time gradient components so that spatial derivatives
and instantaneous temporal derivatives of blood flow lag
products are computed over the ensemble time window.

19. The method of claim 15, comprising employing the
derivative chain rule:

d F B OF dx OF dz

I (p, D)= EE-‘—EE’

so the flow velocity vector is constrained by computed gra-
dient quantities of one or more PW transmission angles,
enabling computation of blood flow vector velocity esti-
mates.
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20. The method of claim 19, comprising augmenting the
computed gradient quantities with instantaneous Doppler-
derived velocity estimates for ensembles of each plane wave
transmission angle.
21. The method of claim 20, comprising the use of gradient
noise variance and Doppler velocity variance to weight Dop-
pler values against gradient time derivatives in the augmented
gradient quantities.
22. The method of claim 1, comprising:
generating on a display device blood flow vector velocity
imagery from the blood flow vector velocity signal, by
synthetic particle entrainment with independent particle
processing, the steps including:
adjusting particle density to follow dynamics of flow extent
from frame to frame, for multiple unconnected flow
regions;
testing for particles leaving flow region, and responding to
the affirmative by deleting relevant particles from par-
ticle list;
testing for particles entering flow regions, and responding
to the affirmative by creating particles in associated pix-
els probabilistically;
propagating each particle in the particle list forward in time
by advancing its spatial position according to its nearest
coincident blood flow vector velocity estimate; and
scaling of the collection of displayed particle propagation
velocities by a desired “slowdown” factor to enable
viewing of particle flow paths at an arbitrarily reduced
speed.
23. An ultrasound processing system, comprising:
a module adapted to generate an acoustic signal, receive at
least one echo of the acoustic signal at a plurality of
receiving elements in the module and obtain a plurality
of echo signals therefrom; and
a processor coupled to the module and configured to:
extract information from the plurality of echo signals to
construct a blood flow vector velocity signal by:
wall filtering the extracted information;
using the wall-filtered information to form autocorrela-
tion values and Doppler frequency estimates;

partitioning of a bistatic range-rate model, f=Av+b+e,
where the flow velocity vector at the image point is
v=[v,, V.5, b represents bias due to aliasing, e is
stochastic error, and the model matrix A is dimen-
sioned [Mx2] and has rows a,,(0,,), where:

Uy = %[sin(@m), 1 +cos(8,,)]

with explicit terms for bias due to aliasing of Doppler

frequencies, into linear and nonlinear parts; and

solving the partitioned model by the weighted least
squares scheme corresponding to at least one point in
the medium; and

detect the presence of blood flow at a display device
pixel by qualifying blood flow vector velocity signals
through a series of tests on values of quality metrics
produced as byproducts of the blood flow vector
velocity estimation procedure; and

a display device configured to generate blood flow vector
velocity imagery from the blood flow vector velocity
signals.

24. An ultrasound processing system, comprising:

a module adapted to generate an acoustic signal, receive at
least one echo of the acoustic signal at a plurality of
receiving elements in the module and obtain a plurality
of echo signals therefrom; and
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a processor coupled to the module and configured to:
extract information from the plurality of echo signals to
construct a blood flow vector velocity signal corre-
sponding to at least one point in the medium, the con-
structing including the following steps of: 5
wall filtering the extracted information;
using the wall-filtered information to form compressed
format conjugate-lagged products, the conjugate-
lagged products F(p, t, 1) of the vector of time samples
s(t), at pixel image point p, of signal data vector § are
computed in compressed amplitude format, for one or
more lags 1-0,1-1, . . . as

Flp,t, )=8()3(t=1)*13(0)s(e=1)* |72

wherein the terms S(t)s(t-1)*
are summands of the sample autocorrelation at lag 1; 15
forming a vector velocity measurement model by using
space-time gradient operation on the products, and
solving said model by a weighted least squares
scheme;
detect the presence of blood flow at a pixel by qualifying 20
blood flow vector velocity signals through a series of
tests on values of quality metrics produced as byprod-
ucts of the blood flow vector velocity estimation pro-
cedure; and
a display device configured to display blood flow vector
velocity imagery from the blood flow vector velocity
signals.
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